

Resource Allocation in Energy-constrained Cooperative Wireless Networks

Lin Dai

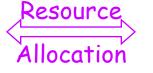
City University of Hong Kong

Outline

• Resource Allocation in Wireless Networks

Tradeoff between Fairness and Throughput

- Fairness and Throughput in Energy-constrained Cooperative Networks
- Optimal Resource Allocation in Energy-constrained Cooperative Networks

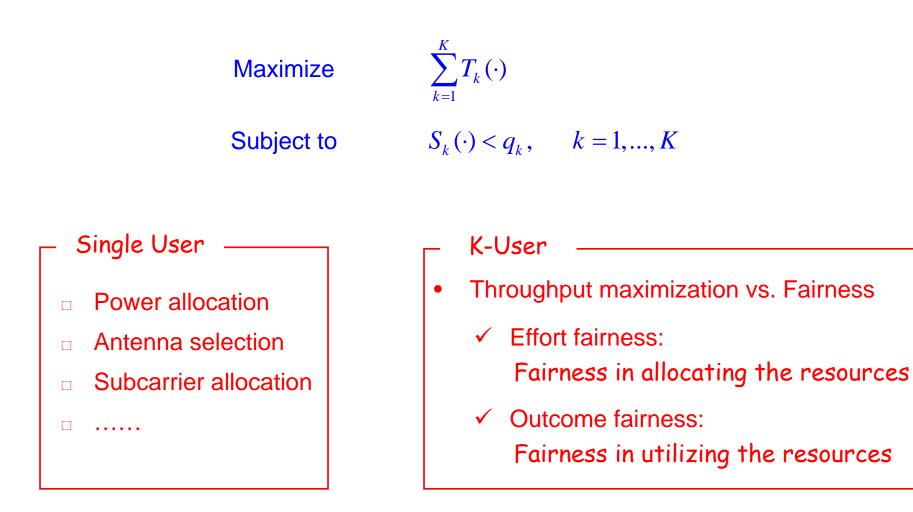

Wireless Network

- Medium electromagnetic wave
 - ➢ fading channel
 - shared spectrum
- Terminal cellphone, PDA, laptop, ...

➢ portable

not so "smart"

 Increasing demand for a large variety of services



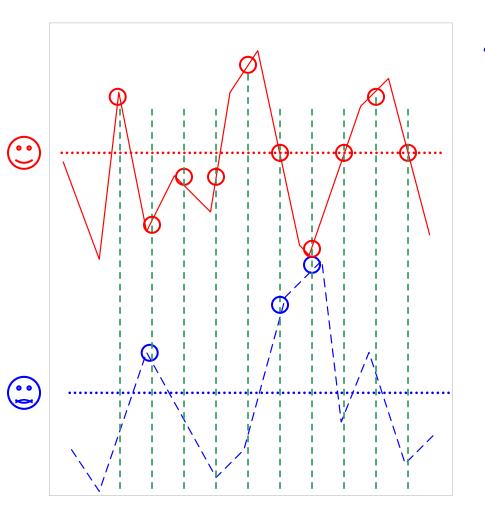
- Voice, data, video, ...

- Limited resources
 - Bandwidth, power,
 processing capability...

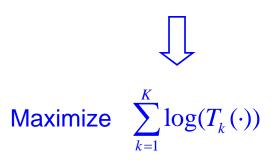

Optimal Resource Allocation

Example: Opportunistic Transmission

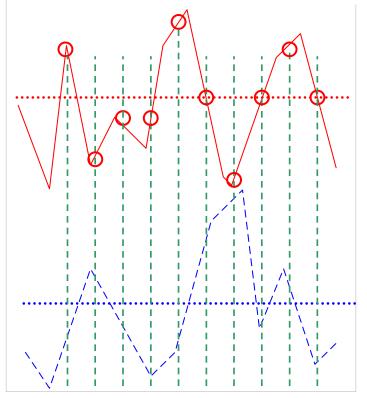
- Allocate different time slots to different users.
- Objective: Maximize $\sum_{k=1}^{K} T_k(\cdot)$

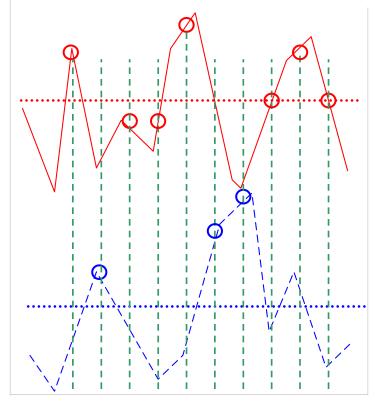


- Total throughput can be maximized by always serving the user with the strongest channel.
- The more users, the higher throughput.


Multiuser Diversity

Opportunistic Transmission with Fairness Constraint


 Help the "poor" -- a disadvantaged user is scheduled when its instantaneous channel quality is high relative to its own average channel condition.



Tradeoff between Throughput and Fairness

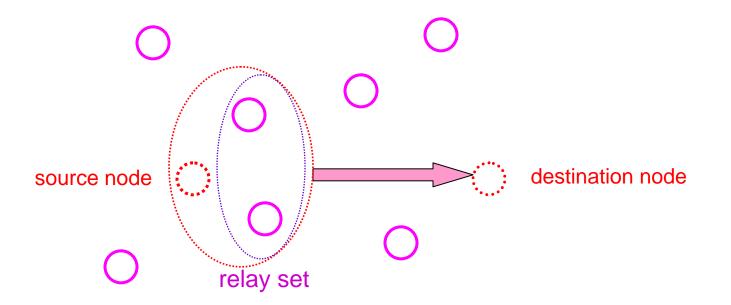
Opportunistic Transmission without Fairness Constraint

Opportunistic Transmission with Fairness Constraint

There is always a tradeoff between fairness and throughput.

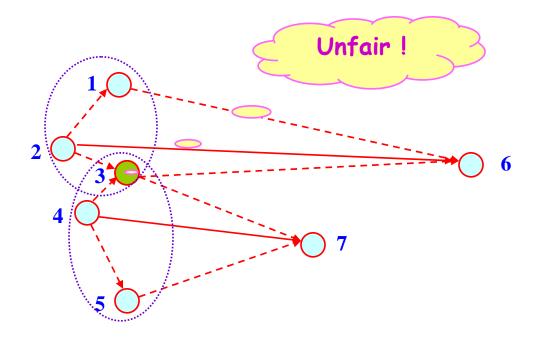
Outline

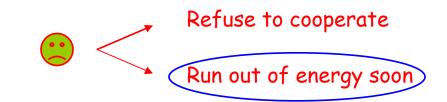
• Resource Allocation in Wireless Networks


Tradeoff between Fairness and Throughput

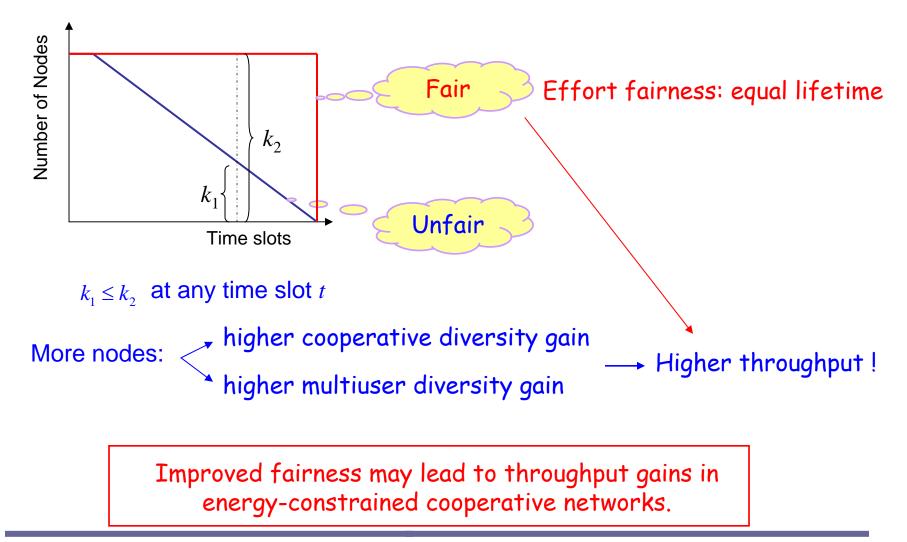
- Fairness and Throughput in Energy-constrained Cooperative Networks
- Optimal Resource Allocation in Energy-constrained Cooperative Networks

Cooperative Networks

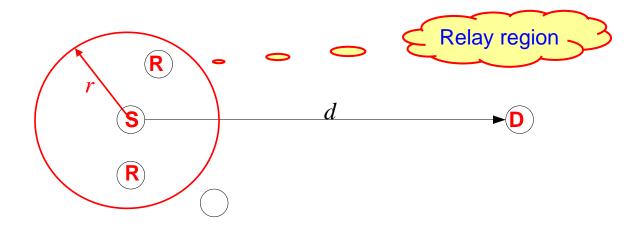

- Diversity gain: $p_e \sim SNR^{-L}$
- How to achieve diversity gain in wireless ad-hoc networks?


Node cooperation: more relay nodes, higher cooperative diversity gain.

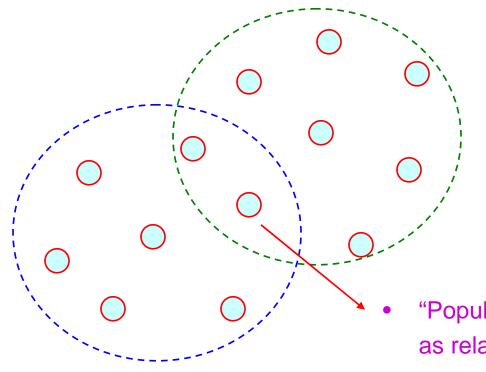
Multiuser Cooperative Protocol



• Some node may have more chances to be relays.

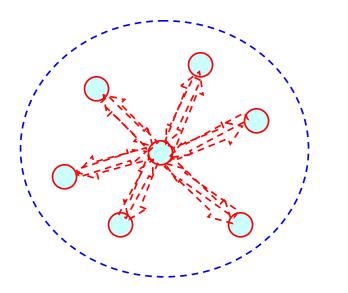

Fairness and Throughput in Energy-constrained Cooperative Networks

Network Model


- A wireless ad-hoc network with *K* nodes
- Each node with an energy constraint of E

• Opportunistic transmission

Full Cooperative Protocol

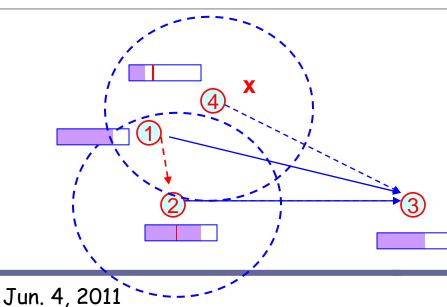


- "Popular" nodes have more chances of acting as relays.
- They will run out of energy much faster than others.

How to Improve Fairness?

Resources required by each node should be no more than what it contributes to other nodes.

 Power Reward – adopted by each node to evaluate the power contributed to and by other nodes.


$$W_k \to W_k + P_k^j \qquad \qquad W_k \to W_k - \Psi_k \qquad \qquad \Psi_k = \sum_{j \in \mathbf{R}_k} P_j^k$$

Power reward increases when node k acts as a relay Power reward decreases when node k employs other nodes as relays

Fair Cooperative Protocol

- For each pair (k, D(k)), compare W_k and the sum relay power $\Psi_k = \sum_{i \in \mathbb{R}_+} P_j^k$
 - If $W_k \ge \Psi_k$, use relays for cooperation
 - Else, no cooperation.
 - Compute the possible throughput.
- Compare the throughput of all the pairs and select the maximal one.
- Update the power reward.

With a power reward:

- Nodes cannot continuously employ relays;
- Nodes will not continuously act as a relay.

Fairness Indicator

- Fairness Indicator: $\xi = \frac{T_{\min}}{T_{\max}}$
 - ✓ Equal lifetime: $\xi = 1$

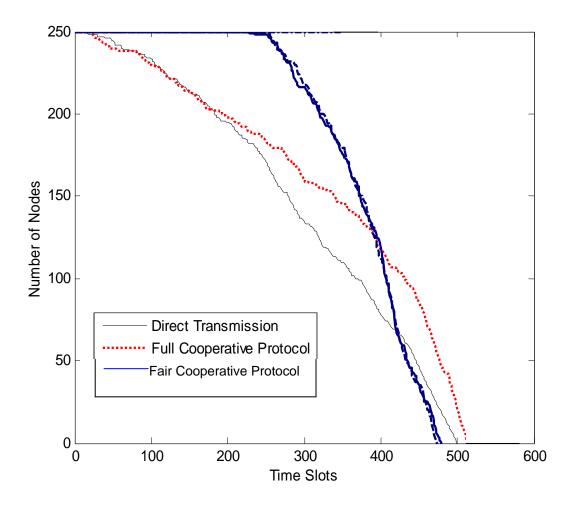
 $T_{\min} = \min\{T_1, T_2, ..., T_K\}$ $T_{\max} = \max\{T_1, T_2, ..., T_K\}$

• Let ξ_d denote the fairness indicator of direct transmission ξ_f full cooperative protocol ξ_a fair cooperative protocol

$$\checkmark \quad \xi_d \le \xi_f \le K^{\nu-1}, \quad 0 < \nu < 1$$
$$\checkmark \quad \xi_a \to \frac{\mathrm{E}[M_k]}{K}, \text{ as } K \to \infty$$

Performance Comparison I: Fairness Indicator

K	20	50	100	150	200	250
Direct transmission ξ_d	0.2	0.11	0.08	0.06	0.05	0.03
Full Cooperation ξ_f	0.16	0.14	0.07	0.04	0.04	0.04
Fair Cooperation ξ_a	0.31	0.34	0.35	0.41	0.48	0.48


 $E[M_k]/K = 0.5$

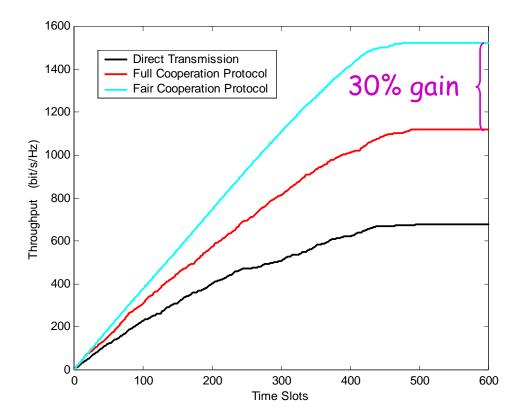
$E[M_k]/K$	0.3	0.4	0.5	0.6	0.9
Fair Cooperation ξ_a	0.32	0.45	0.48	0.66	0.87

K = 250

Performance Comparison II: Lifetime

Aggregate Throughput

 Theorem 3 [Dai'09]: The aggregate throughput of an energyconstrained cooperative ad-hoc network with opportunistic transmission is given by


$$C = \mu_1 \int_0^{T_{\text{max}}} \log_2 a(t) dt + \int_0^{T_{\text{max}}} \log_2 b(t) dt + \xi T_{\text{max}} + (\log_2 K - 1) T_{\text{max}} + \upsilon T_{\text{max}}$$

a(*t*): proportion of nodes competing for the channel *b*(*t*): proportion of nodes acting as relays in the relay region $\mu_1 << 1$

✓ Full cooperation:
$$C_f \approx \xi_f T_{\max} + (\log_2 K - 1)T_{\max} + \upsilon T_{\max}$$

✓ Fair cooperation: $C_a \approx \xi_a T_{\max} + (\log_2 K - 1)T_{\max} + \upsilon T_{\max}$ because $\xi_a > \xi_f$

Performance Comparison III: Aggregate Throughput

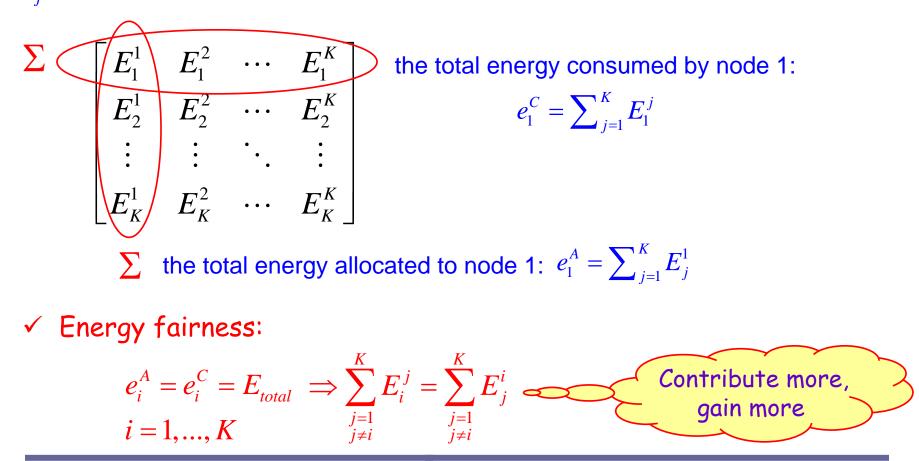
• Lin Dai, Wei Chen, Leonard J. Cimini, Jr. and Khaled B. Letaief, "Fairness Improves Throughput in Energy-Constrained Cooperative Ad-hoc Networks," *IEEE Trans. Wireless Commun.*, vol. 8, no. 7, pp. 3679-3691, July 2009.

Outline

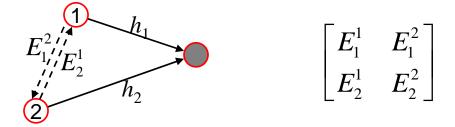
• Resource Allocation in Wireless Networks

Tradeoff between Fairness and Throughput

- Fairness and Throughput in Energy-constrained Cooperative Networks
- Optimal Resource Allocation in Energy-constrained Cooperative Networks


Optimal Resource Allocation

- Resources: energy & time slots
- Objective
 - Maximizing the total throughput
 - Fairness: equal lifetime & energy fairness
- How to allocate?
 - Energy allocation +
 - Time-slots allocation

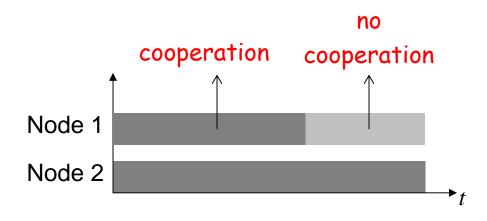

Energy Fairness

 E_{i}^{i} denotes the energy that node *j* consumed in transmitting/relaying signals of node *i*.

Example: Two-node Cooperation

- Energy fairness requires: $E_1^1 + E_2^1 = E_1^2 + E_2^2$ $E_1^1 + E_1^2 = E_2^1 + E_2^2$ $\Rightarrow E_1^2 = E_2^1$
- Suppose $|h_1| > |h_2|$. $E_2^1 > E_1^2$

How to guarantee energy fairness?


To Cooperate or Not to Cooperate?

Node 1:

- State 1: Node 2 helps node 1;
- State 2: Node 1 transmits alone.

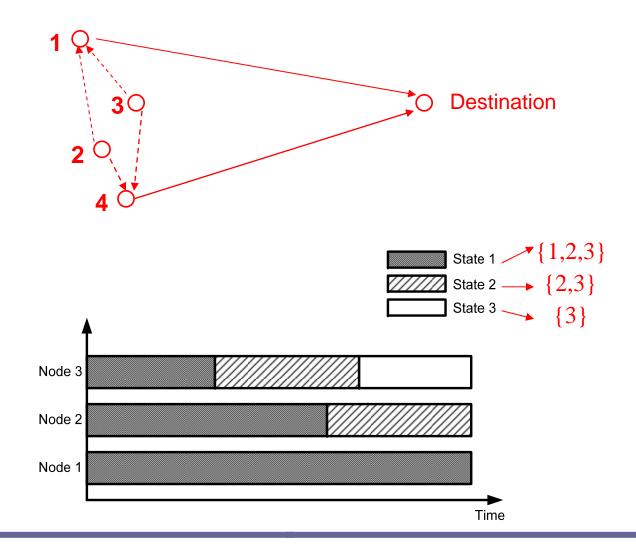
Node 2:

• Node 1 always helps node 2.

Multi-state Cooperation

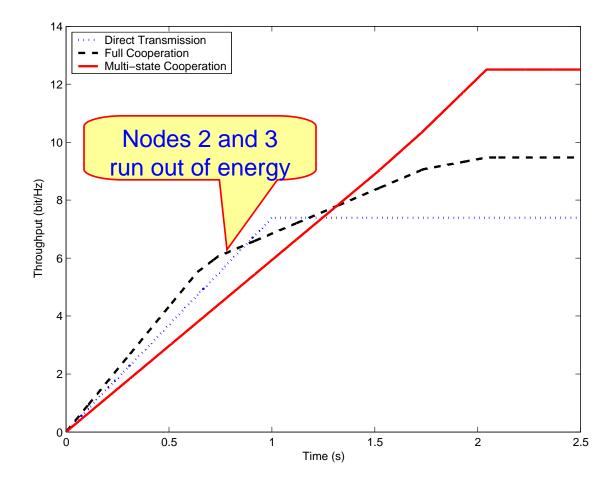
• Define a cooperation Matrix A with $a_{ij} = \frac{E_i^J}{e_i^A} \implies e_i^C = \sum_{j=1}^K E_i^j = \sum_{j=1}^K a_{ij} e_j^A$

$$\begin{bmatrix} e_{1}^{C} \\ e_{2}^{C} \\ \vdots \\ e_{K}^{C} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1K} \\ a_{21} & a_{22} & \cdots & a_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ a_{K1} & a_{K2} & \cdots & a_{KK} \end{bmatrix} \cdot \begin{bmatrix} e_{1}^{A} \\ e_{2}^{A} \\ \vdots \\ e_{K}^{A} \end{bmatrix}$$


A should be a doubly-stochastic matrix!

- Divide cooperation into multiple states;
- At cooperation state n=1,...,N, choose a relay set such that A(n) is a doubly-stochastic matrix.

$$\begin{cases} \sum_{n=1}^{N} \mathbf{e}^{C}(n) = \sum_{n=1}^{N} \mathbf{A}(n) \mathbf{e}^{A}(n) = E_{total} \mathbf{1} \\ \sum_{n=1}^{N} \mathbf{e}^{A}(n) = E_{total} \mathbf{1} \end{cases}$$



Multi-state Cooperation

Performance Comparison I: Aggregate Throughput

Performance Comparison II: Fairness Performance

Compared Transm						_
		Node 1	Node 2	Node 3	Node 4	
Increase in	Full	104%	-36%	-26%	74%	Effort
lifetime	Multi-state	104%	104%	104%	104%	fairness
Increase in throughput	Full	144%	-38%	-22%	90%	Outcome
	Multi-state	87%	55%	67%	76%	fairness

 Wei Chen, Lin Dai, Khaled B. Letaief and Zhigang Cao, "A Unified Cross-Layer Framework for Resource Allocation in Cooperative Networks," *IEEE Trans. Wireless Commun.*, July 2008. (won the 2009 IEEE Marconi Prize Paper Award)

Open Issues

- Distributed implementation
 - Power reward + distributed access
- Generalization to multi-hop cooperative networks
 - Optimal framework
 - Routing and access protocol design

Thank you!

Any Questions?